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Abstract. A theoretical investigation has been made on the field induced rotation of a 
sphere immersed in a dielectric liquid and subjected to electric fields at various intensities 
and frequencies. The regions, in a bidimensional parameter space, with qualitatively 
different dynamics and the explicit expression of the angular frequency of the sphere were 
found. 

1. Introduction 

The spinning of small solid spherical particles when immersed in dielectric liquids 
and subjected to strong electrostatic fields was observed as early as 1896 by Quincke 
(1896). The phenomenon exhibits a threshold value of the electric field which depends 
on certain parameters such as the liquid viscosity and the charge relaxation times. 

Cell and protoplast rotations have been observed in both alternating (Teixeira-Pinto 
er a1 1960, Pohl and Crane 1971, Holzapfel et a1 1982) and rotating electric fields 
(Arnold and Zimmermann 1982). The interpretation of the cell rotation in a rotating 
field led to a theoretical analysis of the effect in terms of the cell and medium electric 
properties (Arnold and Zimmermann 1982, Lovelace et a1 1984). 

The occurrence of cell spinning in an alternating electric field was attributed to a 
dipole-dipole interaction between neighbouring cells (Holzapfel er a1 1982) which 
leads to a time-averaged electric torque. The dipole-dipole interaction mechanism is, 
however, unable to describe the rotation of a single cell far away from the electrodes 
and from other cells, reported by Pohl and Crane (1971). A second delicate point is 
the claimed threshold value of the electric field (Mischel and Lamprecht 1980), in 
contradiction with the theory. 

In order to bring some new insight to the problem a theoretical approach on a very 
simple model is performed. This paper presents the necessary conditions for the 
appearance of the rotation of a uniform sphere suspended in a dielectric liquid and 
subjected to a uniform alternating electric field. 

2. Quincke rotation of spheres 

If a conducting dielectric sphere is immersed in a conducting dielectric liquid and 
subjected to a uniform electrostatic field it would rotate spontaneously when the field 
exceeds a threshold value and the following relation is satisfied: 

71 7 2  (1) 
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where T~ = &,/a,;  7, = &,/u2; E ,  and E ,  are the permittivities, (T, and u2 are the electrical 
conductivities of the medium and the sphere, respectively, and 7, and 7, are the charge 
relaxation times. The phenomenon was reported by Quincke in 1896 and Lampa (1906) 
was the first to state correctly the general condition (1) for spontaneous rotation. A 
literature review on the spontaneous rotation phenomenon can be found in a paper 
by Jones (1984). 

The rotation is due to the appearance of a non-zero electric torque: 

T, = Pes x Eo ( 2 )  

which tends to accelerate any initial rotation of the sphere. Peff and Eo stand for the 
effective dipole moment of the sphere and the external electric field, respectively. 

Following Jones’ paper we derive the expression of the effective dipole moment of 
a rotating sphere in a uniform electrostatic field, 

Eo= Eoe, (3) 

using a rotating coordinate system at rest with respect to the sphere. In the rotating 
frame the expressions for the field and for the effective dipole moment are: 

Eo = Re[ Eo( e, - ieJ eCiwr] 

2,- 2, 
Eo(e, -ie,) e-i”‘ (4) 

where w and R are the angular frequency and the radius of the sphere, respectively, 
and e, and e, two orthogonal unit vectors in the rotation plane. 

The complex permittivities are: 

A . U 1  A . (+2 
E ,  = & , - I -  E , = E 2 - 1 - .  

w 0 

After some straightforward operations the following expression for T,, in the frame 
at rest with respect to the field, is obtained: 

E r  - u r  X T, = 9 V E ,  E 
( E , + 2 ) ( u r + 2 )  x2+1 

where 

and V is the volume of the sphere. 

being: 
The viscous forces tend to restrain rotation, the torque imparted by the medium 

T,, = -6 VVW (7) 
where 7 is the dynamic viscosity of the liquid. 

We are interested in the steady state solutions of the equation of motion: 

d w  
dt  

I - =  T,+ T,, 



Electric field induced rotation of spheres 3303 

where Z is the momentum of inertia of the sphere. In dimensionless terms equation 
(8) has the following simple form: 

d X  P 
d t  x2+ 1 - = cx (- - 1) 

where 

(9) 

For p < 1 equation (9) admits only the trivial steady state solution: 

XI =o. (11)  

For p > 1 two new steady state solutions appear: 

XI = o  X2.,2b = *Jp - 1. (12) 

The * signs refer to the two possible directions of rotation. 
The problem admits two qualitatively different dynamics, the dynamical symmetry 

breaking being controlled by the magnitude of the field. A critical value E, is defined 
so that if E > E, ( p  > 1) any fluctuation destabilises the rest steady state and a stable 
rotational motion appears (figure 1). The new solutions are symmetrical and con- 
sequently the direction of the rotational motion is dictated by chance. It must be 
emphasised that p 2 0 is ensured only if E, > U,, otherwise no rotational motion can 
occur. 

x 1- 

1 

-1 - 

Figure 1. Bifurcation diagram for the Quincke rotational motion. 

3. The rotation of spheres in alternating electric fields 

An alternating electric field 

E = Eoe, sin mot (13 )  
can be described as the superposition of two rotating fields having opposite angular 
frequencies. In the rotating coordinate system of the sphere the field and the induced 
dipole moments have the following expressions: 

E = $(E+ + E - )  Pe* = $( P+ + P - )  (14) 
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where 

E ,  = Re[ Eo( e, - ie2) e-i(wTwo)' 1 

A* . U 2  and E 2  = E l - ] -  
W + W ,  0 T : : w O  

A* . U 1  
E 1  = & , - l -  

wo being the angular frequency of the external alternating electric field. The electric 
torque has four components: 

The second and third terms in equation (16) are time dependent. If w << w o ,  they are 
also fast oscillating so that their mean value over a whole period is zero and their 
contribution can be neglected. In this approximation, in the frame at rest with respect 
to the fluid, the electric torque has the following expression: 

T, =$  V E , E :  + x-xo ) (17)  + 1 (X - XO)l+ 1 

with w07 = X,. 

which, in the alternating electric field case, becomes: 
We are once again interested in the steady state solutions of the equation of motion 

dX x2-x:+1 
d t  

In addition to the field magnitude, the angular frequency of the external electric 
field is a new relevant parameter that must be considered. In order to characterise the 
steady state solutions and their stability, a bidimensional parameter space having the 
dimensionless parameters p and Xo as coordinates is introduced. 

Besides the trivial solution, equation (18) admits two more pairs of symmetrical 
steady state solutions: 

XI = o  

It should be noted that, if XI is defined everywhere in the parameter space, the pairs 
X, and X3 have physical meaning only in some restricted domains. 

Let D, , D 2 ,  D3 be defined by: 

D1 = { ( x o , P ) l P ( l - x : ) < 2 ( x i + 1 ) 2 }  

D 2 =  D l u  D; D3 = D, n D 2 .  
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It is not difficult to verify that X 2  and X ,  are defined only in the domains D2 and D, 
respectively. 

The steady state local stability is easily established by linearising equation ( 1 8 )  in 
the neighbourhood of the solutions (19) .  The linearised equations are: 

( 2 1 )  
d82.3 C [ p + 4 ( X i -  1)*(~~-64X~)”~](p~-64Xi)”~ 

s2 .3  
-- - 7- 

dt  2 p [ p * ( ~ ~ - 6 4 X ~ ) ” ~ ]  

where 

8, = x - X I  8 2  = x - X2,,2b 8 3 = X - X 3 ~ , 3 b .  ( 2 2 )  

The solution X ,  is locally stable in D ,  and unstable outside it; X 2  is locally stable in 
D2 and X ,  is unstable over D3.  

The dynamical behaviour of the system is much more complex than in the case of 
the electrostatic field. There are some regions in the parameter space with qualitatively 
different dynamics and with non-zero intersections (figure 2 ) .  

It is useful to introduce a generalised potential U ( X )  defined by the relation: 

The steady state solutions (19)  are also the points of extremum for U ( X ) :  

u ( x ) = -  x ~ - - P I ~ [ ( x + x ~ ) ~ + ~ I [ ( x - x ~ ) ~ + ~ I  . (24) “( 2 4 ) 
The potential presents three qualitatively different shapes for various values of the 
parameters X ,  and p (figure 3 ) .  In D, - 0, it has a single minimum, in XI.  In D2 - D3 
it has a maximum, in X ,  , and two symmetrical minima, in X , ,  and X Z h  respectively. 
A more complex shape appears in D3 where there are three minima, in X I ,  X , ,  and 
XZb, and two maxima, in X 3 ,  and X3b .  This is the region where the two different 
dynamics are both locally stable. 

Figure 2. Stability diagram in the bidimensional space of parameters X, and p .  Z ,  region 
of local stability of the rotational motion; Ill, region of local stability of the rest steady 
state. - - - the curve defined by F ( X , ,  p )  = 0. 
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Figure 3. The three possible shapes for the generalised potential U ( X ) :  -, ( X , =  0.5; 
p = 12). - . - , ( X ,  = 1; p = 12); - - -, ( X ,  = 1; p = 4). 

The domain D, can be divided into two regions by the curve defined by the implicit 
relation 

where 

p [ p + ( p 2 - 6 4 X i ) ” 2 ]  
8 ( X i +  1) 

F(X,,p) = p + 4 ( X i -  1) + ( p 2  -64Xi)”2 - p  In 

This curve separates the region with U ( X , ) >  U ( X 2 ) ,  where X ,  is ‘metastable’ and X 2  
is stable, from the region with U ( X , )  < U ( X 2 )  where X ,  is stable and X 2  is ‘metastable’ 
(figure 2 ) .  

The term ‘metastable’ is used to designate locally stable steady states which are 
relatively high minima of the potential. 

Consequently, in the domain D3 the steady states have a ‘metastable’ behaviour 
before they disappear or become unstable. 

4. Conclusions 

The rotation of spheres in the uniform electrostatic field has been extended in the case 
of the alternating electric field. Using a rotating coordinate system at rest with respect 
to the sphere we have derived the expression of the electric torque and the equation 
of motion of the sphere in a uniform alternating electric field. 

Sauer and Schlogl (1985), in their extensive and elaborate paper about torques 
exerted on cylinders and spheres by electromagnetic fields, found no torque on a single 
sphere in a constant homogeneous field. They are right if the single sphere is at rest 
but if it rotates with respect to the field a non-zero electric torque appears which is 
able to increase or to decrease the angular frequency in order to attain a steady state. 
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The appearance of the spontaneous rotation of spheres can be explained at a 
phenomenological level by considering the build-up of charge at the interface between 
the particle and the liquid. When the charge relaxation time of the sphere is lower 
than that of the liquid, the electric dipole moment produced by the interface charges 
has the same orientation as the external field and the configuration is stable. If the 
dipole moment is displaced by rotation, the electric torque tends to bring it back 
parallel to the field. On the other hand, if the inequality is inverted, the dipole moment 
itself is inverted and any small rotational displacement produces a torque which tends 
to further increase the displacement; and the rotational motion can be initiated. 

The problem has two relevant parameters that can induce the symmetry breaking: 
the angular frequency and the magnitude of the external electric field. We have 
introduced a bidimensional parameter space and we have found the regions where the 
rotational motion can occur. 

By linearising the equation of motion around the steady state solutions, we have 
found the domains of local stability for these solutions. There are two ways the 
rotational motion can occur. The first is the usual mechanism: the rest steady state 
becomes unstable and the rotational motion becomes stable if a critical curve in the 
parameter space is swept past. The stationary rotational motion develops continuously 
from the rest state. The second mechanism involves the existence of a middle region 
where both competing solutions are locally stable. The rest steady state has a ‘meta- 
stable’ behaviour before becoming unstable. The stationary rotational motion develops 
discontinuously by a non-stationary regime. A similar behaviour has the rotational 
steady state solution when we sweep past the limits of its domain of stability. 
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